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1 Introduction

Genuine supergravity theories can have a vanishing or a negative cosmological constant,

but not a positive one [1, 2]. In the latter case one may, however, introduce the concept of

“fake” supergravity as a solution generating technique [3]. Recently [4] we have initiated

the programme of determining all solutions admitting (pseudo-)Killing spinors in De Sitter

“supergravity” theories. In [4] the “timelike” case of minimal De Sitter supergravity in

five dimensions was analysed. The resulting geometries are defined in terms of a four

dimensional base space which is a hyper-Kähler manifold with torsion (HKT) and a set

of constraint equations. Together with the minimal ungauged (i.e Minkowski) and gauged

(i.e Anti-De-Sitter) supergravity theories in five dimensions, this result established that all

(pseudo-)supersymmetric geometries of five dimensional minimal supergravities are defined

in terms of four dimensional complex geometries, namely HKT, hyper-Kähler and Kähler

manifolds [5].

In this paper we shall analyse the null case of minimal De Sitter supergravity in five

dimensions, using spinorial geometry techniques [6–12]. Our main result is the following: all
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solutions of the minimal five dimensional De Sitter supergravity theory admitting (pseudo)-

Killing spinors from which a null vector field can be constructed fall into the following family

of backgrounds:

ds2 = 2du

(

dv +

(

H − χ2

8
v2

)

du+ χvB + φ

)

− ds2GT , F =
χ

4
du ∧ dv + dB , (1.1)

where χ2/2 is the cosmological constant, GT is u-dependent Gauduchon-Tod space [30],

H, B and φ are, respectively, a function and two 1-forms on GT which may also depend

on u (but not on v). The constraints on GT , B, φ and H are summarised in section 3.1.

Gauduchon-Tod spaces were initially discussed in the context of hyper-hermitian spaces

admitting a tri-holomorphic Killing vector field. They are special types of Einstein-Weyl

3-spaces, obeying constraints. Curiously, these spaces play also a role in the timelike class

of solutions in both D = 5 and in D = 4. Since GT spaces define a four dimensional

HKT geometry, they were used in [4] to construct examples of timelike solutions of the

D = 5 minimal De Sitter supergravity theory for which the base space is not conformally

hyper-Kähler. In the D = 4 minimal De Sitter theory, the timelike solutions are defined

by a base space which is GT [24]. But whereas the Ricci curvature of the Weyl connection

is always non-flat in the solutions we describe in this paper, the D = 4 timelike solutions

allow flat GT spaces.

As for the null supersymmetric solutions of the minimal five dimensional ungauged [13]

and gauged [14] theories, the family of backgrounds (1.1) admits a geodesic, expansion-

free, twist-free and shear-free null vector field N . In four dimensional General Relativity,

such geometries are dubbed Kundt metrics [15]. In higher dimensions, these geometries

have been considered in [17–19]. But N has distinct properties in the De Sitter theory, as

compared with the Minkowski or AdS theories. In the Minkowski and AdS case, the null

vector is always Killing; and for some special cases it becomes covariantly constant. Then

the Kundt geometries become plane-fronted waves with parallel rays (pp-waves). This is

not the case for the De Sitter theory. For the special case with B = 0, however, the null

vector acquires an interesting property: it becomes recurrent, that is, it obeys

∇µN
ν = CµN

ν , (1.2)

for some non-trivial, recurrence one form Cµ. This means that the geometries (1.1)

have special holonomy Sim(3), which is the maximal proper subgroup of the Lorentz

group SO(4, 1).

The four parameter Similitude group, Sim(2), became a focus of recent interest due

to the proposal, by Cohen and Glashow, of Very Special Relativity (VSR) [20]. These

authors investigated if the exact symmetry group of nature could be isomorphic to a proper

subgroup of the Poincaré group rather than the Poincaré group itself. The proper subgroup

they considered was obtained by adjoining the maximal proper subgroup of the Lorentz

group, Sim(2), with spacetime translations. The theory based on this symmetry group,

VSR, actually implies Special Relativity if a discrete symmetry, namely CP, is also added.

But since the latter is broken in nature, VSR is distinct from Special Relativity, albeit

– 2 –



J
H
E
P
0
7
(
2
0
0
9
)
0
6
9

many sensitive searches for departures from Lorentz invariance will fail if VSR is the true

symmetry of nature. In a subsequent development [21], it was shown that General Very

Special Relativity, i.e. a theory based on a symmetry group obtained by a continuous

deformation of the Inhomogeneous Sim(2) group, ISim(2), is a Finslerian geometry, since

the invariant line element, which is a homogeneous function of degree one in displacements,

is not quadratic and it is anisotropic.

Perhaps partly motivated by the Cohen and Glashow proposal, studies of d dimensional

Lorentzian geometries with Sim(d − 2) holonomy have been carried out recently [22].

The resulting geometries have interesting properties, such as the possibility of vanishing

quantum corrections [23]. Possible connections to supersymmetry have also been hinted

at [19]. Here, we show how these geometries indeed emerge in an explicit supersymmetry

computation, a fact recently unveiled in a four dimensional example [24] (see also [25]).

This paper is organised as follows. In section 2 we describe the theory to be consid-

ered as well as some generalities of the spinorial geometry technique that shall be used.

Section 3 gives the details of the calculations leading to the result (1.1). Properties of

the resulting geometries are described in section 4, wherein a brief comparison with the

null supersymmetric solutions of the minimal ungagued and gauged supergravities in five

dimensions is also performed. We then focus on the special case with B = 0 in (1.1), which

is the most general solution for which the null vector field N is recurrent, and discuss

special properties of the curvature for this solutions. Examples with B = 0 and B 6= 0

are presented. Final remarks are given in section 5. Some other technical details of the

computation are described in two appendices. A third appendix presents an introduction

to Gauduchon-Tod spaces.

2 Minimal D = 5 de Sitter supergravity

We begin with a brief review of N = 2, D = 5 minimal De Sitter supergravity. The fake

gravitino Killing spinor equation for this theory is1

(

∂µ +
1

4
ωµ

ρσΓρσ − χ

2
Aµ +

χ

4
√

3
Γµ −

√
3

2
Fµ

ρΓρ +
1

4
√

3
ΓµF

ρσΓρσ

)

ǫ = 0 , (2.1)

where ǫ is a Dirac spinor. Here F = dA is the gauge field strength and χ is a non-zero real

constant. The metric has vielbein e+, e−, e1, e1̄, e2, where e±, e2 are real, and e1, e1̄ are

complex conjugate, and

ds2 = 2e+e− − 2e1e1̄ − (e2)2 . (2.2)

The Einstein and gauge field equations are expressed as

Rµν + 2FµσFν
σ − gµν

3
(F 2 − χ2) = 0 , (2.3)

and

d ∗ F +
2√
3
F ∧ F = 0 , (2.4)

1In this paper we shall use a mostly minus signature.
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respectively, where F 2 = FρσF
ρσ. We should note that, unlike the timelike case, for these

solutions one component of the Einstein equations must be imposed in addition to the

Killing spinor and gauge equations (see [4, 14] for a more detailed discussion on this point).

For De Sitter supergravity in five-dimensions, one takes the space of Dirac spinors to

be the space of complexified forms on R
2, which are spanned over C by {1, e1, e2, e12} where

e12 = e1 ∧ e2. The action of complexified γ-matrices on these spinors is given by

γj = i(ej ∧ +iej
) , γj+2 = −ej ∧ +iej

, (2.5)

for j = 1, 2. γ0 is defined by

γ0 = γ1234 , (2.6)

and satisfies

γ01 = 1, γ0e12 = e12, γ0ej = −ej , j = 1, 2 . (2.7)

In what follows we will restrict our attention to the constraints obtained from the

Killing spinor equation (2.1) in the null case, i.e. when the vector field constructed from

the Killing spinor is null. It will then be useful to adopt a null basis in the γ-matrices

Γ± =
1√
2
(γ0 ∓ γ3) ,

Γ1 =
1√
2
(γ2 − iγ4) =

√
2ie2∧ ,

Γ1̄ =
1√
2
(γ2 + iγ4) =

√
2iie2

,

Γ2 = γ1 . (2.8)

Finally, as in [26], we can put a generic null Killing spinor into a simple canonical form

ǫ = 1 + e1 , (2.9)

by making use of Spin(4, 1) gauge transformations. The resulting equations, obtained by

evaluating the Killing spinor equation on ǫ, are listed in appendix A. We remark also that

if ǫ = 1 + e1 satisfies the Killing spinor equations, then so does the spinor e2 − e12. This

can be seen by noting that the operator C defined via

C1 = −e12, Ce12 = 1, Ce1 = e2, Ce2 = −e1 (2.10)

satisfies

C ∗ γµ = γµC ∗ . (2.11)

It therefore follows that if ǫ satisfies (2.1) then so does C ∗ ǫ. Hence the solutions under

consideration here preserve at least half of the (pseudo)-supersymmetry.2

2Since the action of C ∗ does not depend on the timelike or null class, we conclude that, for the timelike

solutions obtained in [4], there is again at least one half of (pseudo)-supersymmetry preserved, the Killing

spinors in this case being, at least, 1 and e12.
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3 Analysis of the constraints

An analysis of the equations presented in appendix A, yields the following relations between

the gauge potential and the spin connection

A+ = − 1

χ
ω+,+− , A− = − 1

χ
ω−,+− , (3.1)

A1 = − 1

χ
(ω1,+− + ω−,+1) , A2 = − 1

χ
(ω2,+− + ω−,+2) ; (3.2)

between the field strength and the spin connection

F11̄ = −i
√

3ω−,+2 , F12 = −
√

3

2
iω2,12 , F+− = −1

4
χ , (3.3)

F−1 =
i√
3
ω−,12 , F+2 = F+1 = 0, , F−2 = − i√

3
ω−,11̄ ; (3.4)

and the following constraints on the spin connection

ω2,+1̄ = ω2,+2 = ω+,+2 = ω+,+1̄ = ω+,1̄2 = ω+,11̄ = ω1̄,1̄2 = ω1̄,+1̄ = ω1,+2 = ω1,+1̄ = 0 ,

ω2,11̄ =

√
3iχ

4
, ω2,1̄2 = −2ω−,+1̄ = ω

1̄,1̄1 , (3.5)

and

− 2ω−,+2 + ω1,1̄2 −
√

3

4
iχ = 0 . (3.6)

Thus, the gauge field one-form is given by

χA =
(

− ω+,+−
)

e+ − ω−,+−e− −
(

ω1,+− + ω−,+1

)

e1

−
(

ω1̄,+− + ω−,+1̄

)

e1̄ −
(

ω2,+− + ω−,+2

)

e2 , (3.7)

and the field strength 2-form is given by

F = −
√

3iω−,+2e
1 ∧ e1̄ −

√
3i

2
ω2,12e

1 ∧ e2 +

√
3

2
iω2,1̄2e

1̄ ∧ e2 − χ

4
e+ ∧ e−

+
i√
3
ω−,12e

− ∧ e1 − i√
3
ω−,1̄2e

− ∧ e1̄ − i√
3
ω−,11̄e

− ∧ e2 . (3.8)

These constraints are sufficient to imply that

(LNe−)m = (LNeα)m = (LNe2)m = 0 ,

(LNe−)− = −1

2
ω+,+− , (LNeα)− = −1

2
(ω−,+ᾱ − ω+,−ᾱ) ,

(LNe2)− = −1

2
(ω−,+2 − ω+,−2) , (3.9)

for m = 1, 1̄, 2, and where we have introduced a coordinate v such that

N = e+ =
∂

∂v
. (3.10)

– 5 –
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The non-zero components of these Lie derivatives can be eliminated by making use of the

residual gauge freedom; those transformations which leave ǫ = 1+e1 invariant. The details

are presented in appendix B. We therefore set, without loss of generality, A+ = 0, and

LNe− = 0 , LNeα = 0 , (3.11)

with

ω+,−1 = ω−,+1 , ω+,−2 = ω−,+2 . (3.12)

Collecting these results we can write the exterior derivatives of the vielbein as

de+ = e+ ∧ χA− ω−,−1e
− ∧ e1 − ω−,−1̄e

− ∧ e1̄ − ω−,−2e
− ∧ e2

−(ω1,−1̄ − ω1̄,−1)e
1 ∧ e1̄ − (ω1,−2 − ω2,−1)e

1 ∧ e2 − (ω1̄,−2 − ω2,−1̄)e
1̄ ∧ e2 ,

de− =
[

(ω−,+1 − ω1,+−)e1 + (ω−,+1̄ − ω1̄,+−)e1̄ + (ω−,+2 − ω2,+−)e2
]

∧ e− , (3.13)

de1 =
[

(ω−,11̄ − ω1,−1̄)e
1 − ω1̄,−1̄e

1̄ − (ω−,1̄2 + ω2,−1̄)e
2
]

∧ e−

+ω1̄,11̄e
1 ∧ e1̄ + (ω1,1̄2 + ω2,11̄)e

1 ∧ e2 , (3.14)

de1̄ = −
[

ω1,−1e
1 + (ω−,11̄ + ω1̄,−1)e

1̄ + (ω−,12 + ω2,−1)e
2
]

∧ e−

+ω1,11̄e
1 ∧ e1̄ + (ω1̄,12 − ω2,11̄)e

1̄ ∧ e2 , (3.15)

de2 =
[

(ω−,12 − ω1,−2)e
1 + (ω−,1̄2 − ω1̄,−2)e

1̄ − ω2,−2e
2
]

∧ e−

−(ω1,1̄2 − ω1̄,12)e
1 ∧ e1̄ + ω2,12e

1 ∧ e2 + ω2,1̄2e
1̄ ∧ e2 . (3.16)

As e− is hypersurface orthogonal, it is natural to define a coordinate u such that

e− = fdu , (3.17)

where f ∈ R is v-independent. We can set f = 1 by making a combined R × Spin(4, 1)

transformation of the form e−hehΓ+− for h ∈ R, with ∂+h = 0. This transformation leaves

1 + e1 invariant, and also preserves the gauge A+ = 0. With this choice e− is closed,

and therefore

ω−,+2 = ω2,+− , ω−,+α = ωα,+− , (3.18)

for α = 1, 1̄. Further progress can be made by examining the consistency conditions,

F = dA; from the (dA)+− component we find

∂+A− = −χ
4
, (3.19)

and

∂+A1 = ∂+A1̄ = ∂+A2 = 0 , (3.20)

from the (dA)+1, (dA)+1̄, and (dA)+2 components respectively.

Next, notice that

LNA = −χ
4
e− , LNe+ = χA , (3.21)

– 6 –
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together with (3.11) imply

LNLNe+ = −χ
2

4
e− , LNLNA = 0 . (3.22)

We can make explicit the v-dependance of A and e+ using the relations above

A = −χ
4
vdu+ B , (3.23)

e+ = dv − χ2

8
v2du+ χBv + α , (3.24)

where B, α are v-independent. F then takes the form

F = −χ
4
dv ∧ du+ dB , (3.25)

or equivalently

F = −χ
4
e+ ∧ e− +

χ

4
(χvB + α) ∧ e− + dB . (3.26)

Having introduced the co-ordinates u, v, three remaining real co-ordinates xm (m = 1, 2, 3)

can be introduced such that

e1 = e1
mdx

m, e2 = e2
mdx

m . (3.27)

Here we have removed any du terms from e1, e2 by making use of a gauge transformation

of the form (B.3). We also eliminate Bu with a shift in v and a subsequent redefinition of α.

Next consider the constraints (3.5) and (3.6); these are equivalent to

d̃e2 = −
√

3iχ

2
e1 ∧ e1̄ − χe2 ∧ B ,

d̃e1 = −
√

3iχ

2
e2 ∧ e1 − χe1 ∧ B , (3.28)

where d̃ denotes the restriction of the exterior derivative to hypersurfaces of constant v, u.

This implies that the 1-parameter family of 3-manifolds GT with metric

ds2GT = (e2)2 + 2e1e1̄ , (3.29)

admits a real basis Ei for i = 1, 2, 3 such that

d̃Ei = −
√

3χ

2
⋆3 Ei + χB ∧ Ei , (3.30)

where ⋆3 denotes the Hodge dual on GT , with volume form ǫ3 = ie11̄2. It follows that

GT admits a Gauduchon-Tod structure [30] (see appendix C for a discussion of these

structures). Note in particular that (3.30) implies

d̃B =

√
3χ

2
⋆3 B , (3.31)

from which we obtain

d̃ ⋆3 B = 0 . (3.32)

– 7 –
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To proceed further, compare the expression (3.25) for F to (3.8), to obtain

Y1 =
−i√

3
ω−,12 , Y2 =

i√
3
ω−,11̄ , (3.33)

where

Ym =
χ2v

4
Bm +

χ

4
αm + (dB)m− , (3.34)

for m = 1, 1̄, 2.

In order to investigate the constraints (3.33), it will be useful to write

α = φ+Hdu , (3.35)

where φ = φmdx
m, and also denote the Lie derivative with respect to ∂/∂u as Ḃ = L∂/∂uB.

Then (3.33) is equivalent to

χ

4
φ− Ḃ − 1

2
√

3
⋆3 (d̃φ+ χB ∧ φ− Ei ∧ Ėi) = 0 . (3.36)

It is straightforward, but tedious, to show that these constraints, together with their associ-

ated integrability conditions, are sufficient to imply that the gauge field equations hold with

no further constraint. Finally, we consider the Einstein equations. Pseudo-supersymmetry

implies that all components of the Einstein equations hold automatically, with the excep-

tion of the −− component, which must be computed explicitly. From this component, we

find the following condition on the function H:

�3H + χB · d̃H = ∇̃iφ̇i + (Ëi)i + χφ · Ḃ − 4Ḃ2 − 2
√

3 ⋆3

(

χ

4
φ− Ḃ

)

ij

(Ėi)j , (3.37)

where �3 denotes the Laplacian on GT .

3.1 Summary

To summarise, all null solutions of minimal five dimensional De Sitter supergravity are

constructed as follows:

(i) Choose a Gauduchon-Tod space GT , ds2GT = δijE
iEj, where the frames obey (3.30).

Ei and B, in general, depend on u.

(ii) Choose a 1-form on GT , φ, possibly u dependent, obeying (3.36).

(iii) Choose a function on GT , H, possibly u dependent, obeying (3.37).

(iv) The solution is then given by (1.1). Note that Ei, B, φ and H do not depend on the

spacetime coordinate v.

– 8 –
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4 Properties of the solution and special cases

The general solution (1.1) is a Kundt geometry. To see this consider the null vector field

N = ∂/∂v. It is straightforward to check that the null congruence with tangent vector

N is geodesic (Nµ∇µN
ν = 0), hypersurface orthogonal (N ∧ dN = 0, where N is the

1-form dual to the null vector field), expansion free (∇µN
µ = 0) and shear free (since

it is expansion free and ∇(µNν)∇µNν = 0). It follows that the geometry is of (higher

dimensional generalisation of) Kundt type (see [27] for a thorough discussion of the four

dimensional Kundt geometries). It is a special case of the general form presented in [18]

for higher dimensional Kundt geometries (see eq. (77) therein).

A distinct feature of the general solution (1.1) when compared to the other null so-

lutions of minimal supergravity theories in D = 5 is that N is not a Killing vector field.

In both the ungauged [13] and gauged [14] minimal five dimensional supergravity theories,

the general null solution can be written as

ds2 =
2du

H

(

dv +
[

F −H3~b ·~b
] du

2
−H3~a · d~x

)

−H2γijdx
idxj . (4.1)

In the ungauged case,
~b = ~a , γij = diag(1, 1, 1) ; (4.2)

in the gauged case,

~b =

(

a1,
a2

S
,
a3

S

)

, γij = diag(1, S2, S2) ; (4.3)

in both cases the metric functions H, F and vector ~a (with components ai) depend on

(u, ~x), but not on v. The same is true for the function S, which appears in the gauged

case. In either case a (different) set of constraints has to be obeyed in order to have a susy

solution of the theory.

The null vector field N = ∂/∂v is therefore Killing and obeys

∇µNν = N[µ∂ν] lnH . (4.4)

Generically, the solutions may be characterised as plane-fronted waves, i.e they possess a

geodesic, expansion-free, twist-free and shear-free null vector field N . If H depends solely

on u, N becomes covariantly constant and the solutions become plane-fronted waves with

parallel rays (pp-waves).

Another (related) distinction between the null solutions presented here and those of

the ungauged and gauged theories is that, for the latter, the null vector is never recurrent.

The null vector field N is recurrent if (1.2) holds. But the Killing character of N prevents

this possibility. In the De Sitter case, however, the possibility of recurrence arises. A simple

calculation shows that this requires gui,v = 0. Therefore N is recurrent iff B = 0.

A different way of reaching the same conclusion comes about by realising that the

vector-field N can be constructed as the vector-bilinear of the Killing spinors (see e.g.

ref. [13]). This identification allows us to derive the constraint

∇µNν = χ Aµ Nν + 1√
3

(ıN ⋆ F )µν , (4.5)
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which implies that N is recurrent iff F satisfies the radiation condition N ∧ F = 0. Com-

bining this with eqs. (3.26) and (3.31), then implies that the holonomy of the solution is

Sim whenever B = 0.

The general solution with B 6= 0 can also be given a Sim-holonomy structure: rewrite

eq. (4.5) by introducing a torsionful connection D such that

DµNν ≡ ∇µNν − Sµν
σNσ = χ AµNν with

√
3Sµνσ = (⋆F )µνσ , (4.6)

so that N is recurrent w.r.t. the connection D. As the torsion is totally anti-symmetric,

whence the connection is metric, the arguments of ref. [22] can be straightforwardly gen-

eralised to see that the holonomy of D is contained in Sim(3).

We shall focus on the B = 0 case due to its special properties.

4.1 B = 0

For B = 0, the general solution (1.1) reduces to

ds2 = 2du

(

dv +

(

H − χ2

8
v2

)

du+ φ

)

− ds2GT , F =
χ

4
du ∧ dv , (4.7)

where GT is the round S3 with Ricci scalar R3 = 9χ2/8, H is a harmonic function on GT

which may also depend on u (but not on v) and φ is a u-dependent 1-form on GT (which

does not depend on v) satisfying

d̂φ =

√
3χ

2
⋆3 φ . (4.8)

d̂ denotes the exterior derivative restricted to hypersurfaces of constant u, and ⋆3 denotes

the Hodge dual on GT . This family of backgrounds has Sim holonomy and constant scalar

curvature invariants, as we shall now describe.

4.1.1 Sim holonomy

If B = 0, N is a recurrent null vector field; in particular we find that

∇µN
ν = −1

4
χ2vNµN

ν . (4.9)

The recurrence relation (4.9) is enough to show that it has holonomy Sim(3) [22]. The

Similitude group Sim(n − 2) is an (n2 − 3n + 4)/2-dimensional subgroup of the Lorentz

group SO(n − 1, 1), which is isomorphic to the Euclidean group E(n − 2) augmented

by homotheties (or similarity transformations; hence its name). The Sim group leaves

invariant a null direction. Since this is the maximal proper sub-group of the Lorentz

group, it is the largest holonomy group one can have for geometries with reduced holonomy.

Supersymmetric geometries are expected to have reduced holonomy groups, since there

are (super-)covariantly constant spinors. In the De Sitter case we are indeed finding the

minimal possible (yet non-trivial) holonomy reduction. In the Minkowski and AdS theories,

on the other hand, the holonomy reduction can be larger; for a generic Brinkmann wave

the holonomy is just E(n−2). For more details about the Sim groups and geometries with

Sim holonomies see [22].
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4.1.2 Curvature and scalar curvature invariants

Let us consider the structure of the Riemann tensor. A computation shows that

Rµνλτ = (R0)µνλτ + 4N[µθν][λNτ ] +Nµψνλτ −Nνψµλτ +Nλψτµν −Nτψλµν ,

(4.10)

where

ψµνλ =
2

3
∇µ∇[νφλ] +

1

3
∇ν∇[µφλ] −

1

3
∇λ∇[µφν] , (4.11)

θµν = ∇µ∇νH +
1

4
χ2v∇(µφν) +

1

4
(dφ)µλ(dφ)ν

λ , (4.12)

and (R0)µνλτ denotes the Riemann tensor of g0, i.e. dS2 × S3 which is obtained by setting

φ = 0,H = 0 in the above solution. Note in particular that

Nµψµνλ = 0 , Nµθµν = 0 . (4.13)

From (4.10) it follows straighforwardly that

Rντ = (R0)µνλτg
µλ + θµ

µNνNτ − 2ψµ
µ(νNτ) ; (4.14)

noting that the inverse metric gµν has guu = 0 it follows that

RµνN
µNν = 0 , (4.15)

which is expected for Kundt geometries [27]. From the expression of the Ricci tensor it

follows that

R = (R0)µνλτg
µλgντ = (R0)µνλτ (g0)µλ(g0)ντ = R0, (4.16)

where R0 is the Ricci scalar of g0. The middle equality follows from an analysis of the

non-trivial components of gµν and (R0)µνλτ . The latter is the direct sum of the curvature

tensors for dS2 and for the 3-sphere; the full inverse metric and the one for g0 obey

guv = (g0)uv , gij = (g0)ij , (4.17)

where xi are the coordinates on S3.

Actually, the geometry (4.7) has an interesting property which generalises (4.16): all

scalar invariants constructed solely from the Riemann curvature and the metric (i.e. without

covariant derivatives) are constant and equal to the analogous scalar invariant for g0. If

we denote such scalar invariant, of degree p, by S(p), then the statement is:

S(p)
[

(R0)µναβ , gτσ

]

= S(p)
[

(R0)µναβ , (g
0)τσ

]

. (4.18)

Let us prove this. Consider any scalar invariant of degree p. Note that from inspection

of (4.10), and using (4.13), it follows that such a scalar invariant can be written schemati-

cally as

S(p) = cp(R
0)p + cp−1(R

0)p−1 + · · · + c1R
0 + c0 , (4.19)

where cp−k is of degree k in θ, ψ. The proof follows in three steps:
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(i) First note that c0 = 0; this follows directly from (4.13).

(ii) Secondly, note that for 1 ≤ k < p, cp−k(R
0)p−k must vanish. This is because if there is

any contraction of N with R0, the only corresponding component of R0 entering into

such a contraction is (R0)uvuv (corresponding to the dS2 Riemann tensor). Observe

that in the dS2 Riemann tensor, there is a pairing between u and v indices; the N

contraction eliminates one of the v indices, leaving one unpaired u index; this must

contract with a tensor containing one free contravariant u index. Such an object

cannot be constructed from θ or ψ because θu
α = 0, ψu

αβ = ψα
u

β = 0, where indices

are raised with respect to the metric given in (4.7). Hence, all such contractions

must vanish.

(iii) Finally, having eliminated these terms, it follows that the curvature invariant is con-

structed entirely from R0, but with indices raised using the metric given in (4.7).

However, (4.17) shows that the φ and H terms in this metric do not give any contri-

bution to this expression; the only components of the inverse metric entering into S(p)

are guv , and gij which are identical to the corresponding inverse metric components

in dS2 × S3 (i.e. there is no dependence on H or φ in these components). Hence the

curvature invariant corresponds to a scalar curvature invariant of dS2 × S3 which is

constant, since it is a direct product of constant curvature spaces.

The solution (4.7) seems to have further interesting properties concerning scalar in-

variants that contain covariant derivatives. Indeed, computing some examples appears to

indicate that they all vanish. It appears, therefore, to be a five dimensional example of

the four dimensional I-symmetric spacetimes studied in [16].3 The reader interested in

spacetimes with vanishing or constant scalar invariants is referred to [23] and references

therein.

4.1.3 Special cases

It has already been observed that, when B = 0, φ = 0, H = 0, the geometry is just dS2×S3.

In four dimensional General Relativity, the direct product of a two dimensional De Sitter

space and a two dimensional sphere, together with a flux proportional to the volume form of

either the De Sitter space or the sphere, is a very simple solution to Einstein-Maxwell theory

with a positive cosmological constant, called the Nariai solution [28]. It is straightforward

to generalise this solution to higher dimensional Einstein-Maxwell-Λ theory [29]. Since for

this solution the Chern-Simons term is irrelevant, it also arises in the minimal De Sitter

supergravity we are considering herein.

Solutions with φ = 0, H 6= 0 correspond to plane fronted gravitational waves (rather

than pp-waves, since the null vector is not covariantly constant) propagating on dS2 × S3.

In order to construct examples of solutions with φ 6= 0, it is convenient to write the

metric on GT as

ds2GT =
4

3χ2

[

(σ1
L)2 + (σ2

L)2 + (σ3
L)2
]

, (4.20)

3We thank S. Hervik for bringing this reference to our attention.
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where σi
L are the standard left invariant 1-forms on SU(2) satisfying

dσi
L =

1

2
ǫijkσj

L ∧ σk
L , (4.21)

then a solution to (4.8) is obtained by setting

φ = ξi(u)σ
i
L , (4.22)

where ξi depend only on u. This gives rise to a squashing of the five dimensional Nariai

solution, on top of which plane fronted gravitational waves may propagate, if we take a

non trivial H.

4.2 An example with B 6= 0

An example with B 6= 0 can be constructed by taking the Gauduchon-Tod space to be the

Berger sphere. As observed in [30, prop. 6], the Berger sphere is the only compact GT-

space that is not an Einstein space and has non-vanishing Weyl-scalar;4 Using the explicit

GT-structure of the Berger sphere, eqs. (C.11) given in appendix C, we find a solution,

which is another squashing of the Nariai cosmos. Explicitly the solution reads

ds2 = 2du

(

dv − χ2

8
v2 du+ v sinµ cosµ σ3

L

)

− 4 cos2 µ

3χ2
ds2Berger ,

A = −χ
4
v du+

sinµ cosµ

χ
σ3

L . (4.23)

For µ = 0 we recover the Nariai solution of section 4.1.3.

5 Final remarks

In this paper the most general null solution of D = 5 minimal De Sitter supergravity ad-

mitting (pseudo-)Killing spinors was computed. The solutions we found preserve at least

half of the (pseudo)-Killing spinors and can be described as a particular type of (higher

dimensional generalisation of) Kundt geometry. Unlike the null solutions of minimal un-

gauged and gauged supergravity, the null vector N , which is geodesic, twist-free, shear-free

and expansion-free is not Killing. This is analogous to what happens in the timelike case.

The timelike vector field built from Killing spinors is Killing in the ungauged and gauged

supergravity theories but not in the De Sitter theory [4].

The null vector N can, however, have a special property: it may become recurrent.

This means that the reduction of the holonomy group of the geometries is minimal. The

geometries then have Sim(3) holonomy, the maximal proper sub-group of the five dimen-

sional Lorentz group. The results of [24, 25] show that the null solutions of D = 4 minimal

De Sitter supergravity admitting (pseudo-)Killing spinors have holonomy Sim(2). It would

be interesting to know if (pseudo-)supersymmetric null solutions in De Sitter supergravity

in all dimensions admit, at least for a subset of the solutions, Sim holonomy.

4 The Weyl scalar is constrained, by pseudo supersymmetry, to be W = −9χ2/8, which is non-vanishing.
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In ref. [22], Gibbons and Pope showed that the dimensional reduction of a space of

Sim holonomy along a spacelike direction in the lightcone gives rise to time-dependent

Kaluza-Klein black holes. The general solution found here can, as well, be dimensionally

reduced to four dimensions, leading to backgrounds that fit naturally in the general class

of solutions found in refs. [24, 25]. As ref. [22] focusses on spaces with Sim holonomy, the

dimensionally reduced solutions miss the characteristic time-dependence associated to a

non-vanishing B. Thus, the dimensional reduction of the Kundt metrics found here leads

to time-dependent KK black-holes with a more general time dependence than the ones

considered in [22].
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A The linear system

The gravitino equation acting on ǫ in the + direction gives

χA+ = − i√
3
F+2 − (ω+,+− + ω+,11̄) ,

− i√
3
F+1̄ + ω+,1̄2 = 0 ,

ω+,+2 = 0 ,

ω+,+1 = 0 . (A.1)

In the − direction

χA− =
√

3iF−2 − (ω−,+− + ω−,11̄) ,

−
√

3iF−1̄ + ω−,1̄2 = 0 ,

2√
3
F+− − iω−,+2 −

1√
3
F11̄ +

χ

2
√

3
= 0 ,

iω−,+1̄ +
1√
3
F1̄2 = 0 . (A.2)
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In the 1 direction

χA1 =
√

3iF12 − (ω1,+− + ω1,11̄) ,

− 2i√
3
F11̄ + ω1,1̄2 +

i√
3
F+− − iχ

2
√

3
= 0 ,

√
3F+1 − iω1,+2 = 0 ,

iω1,+1̄ +
1√
3
F+2 = 0 . (A.3)

In the 1̄ direction

χA1̄ =
i√
3
F1̄2 − (ω1̄,+− + ω1̄,11̄) = 0 ,

ω1̄,1̄2 = ω1̄,+1̄ = 0 ,

1√
3
F+1̄ − iω1̄,+2 = 0 , (A.4)

In the 2 direction

χA2 = − i√
3
(F+− + F11̄) − (ω2,+− + ω2,11̄) +

iχ

2
√

3
,

2i√
3
F1̄2 + ω2,1̄2 = 0 ,

2√
3
F+2 − iω2,+2 = 0 ,

iω2,+1̄ −
1√
3
F+1̄ = 0 . (A.5)

B Spin(4, 1) gauge transformations

The most general Spin(4, 1) gauge transformation preserving the Killing spinor ǫ = 1 + e1
is generated by

T1 = γ01 + γ13, T2 = γ02 + γ23, T3 = γ04 − γ34 , (B.1)

which satisfy

Ti(1 + e1) = 0 . (B.2)

The induced effect of the gauge transformation exT1+yT2+zT3 (for x, y, z ∈ R) on the

vielbein is given by

e+ → e+ + µe− + τmem ,

e− → e− ,

em → em + σme− . (B.3)

where here the Latin index m = 1, 1̄, 2, and

σ1 = y + iz , σ1̄ = y − iz , σ2 =
√

2x , τm = δmnσ
n , µ =

1

2
δmnσ

mσn . (B.4)
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Such transformations will leave the metric invariant, and can be used to set

(LNem)− → (LNem)− + (LNσ
m)− + σm(LNe−)−

= (dem)+− + σm(de−)+− + ∂+σ
m , (B.5)

which can be locally made to vanish for a suitable choice of σ.

Further simplification can be made by considering the combined R × Spin(4, 1) gauge

transformation e−hehΓ+− for h ∈ R, which also leaves the Killing spinor ǫ = 1+e1 invariant.

Under this transformation, the gauge potential transforms as

A→ A− 2

χ
dh . (B.6)

This allows us to set A+ = − 1
χω+,+− = 0 without loss of generality. Hence we also find that

(LNe−)− = 0 . (B.7)

C Gauduchon-Tod spaces

A Weyl manifold is a manifold M of dimension n together with a conformal class [g] of

metrics on M and a torsionless connection D, which preserves the conformal class, i.e.

D g = 2θ ⊗ g , (C.1)

for a chosen representative g ∈ [g]. Using the above definition, we can express the connec-

tion DXY as

DaYb = ∇g
aYb + γab

c Yc with γab
c = ga

cθb + gb
cθa − gabθ

c , (C.2)

where ∇g is the Levi-Cività connection for the chosen g ∈ [g]. We define the curvature of

this connection through [Da, Db]Yc = −Wabc
dYd, using which we define the associated Ricci

curvature as Wab ≡ Wacb
c. The Ricci tensor is not symmetric and we have

W[ab] = −n
2
Fab , where F ≡ dθ , (C.3)

W(ab) = R(g)ab − (n− 2)∇(aθb) − (n− 2) θaθb − gab [∇aθ
a − (n− 2) θaθ

a] . (C.4)

The Weyl-scalar is defined as W ≡ Wa
a, which explicitly reads

W = R(g) − 2(n − 1) ∇aθ
a + (n− 1)(n − 2) θaθ

a . (C.5)

The 1-form θ acts as gauge field gauging an R-symmetry, which is the reason why we have

a conformal class of metrics on M; in fact under a transformation g → e2w g we have that

θ → θ + dw and W → e−2wW, whereas Wabc
d and Wab are conformally invariant.

A Weyl manifold is said to be Einstein-Weyl if the curvatures satisfy

W(ab) =
1

n
gab W . (C.6)
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A metric g in the conformal class [g] is said to be standard or Gauduchon if it is

such that

d ⋆ θ = 0 or equivalently ∇aθ
a = 0 , (C.7)

where the ⋆ is taken w.r.t. the chosen metric g. Gauduchon [31] proved the existence

of a standard metric compact EW manifold, and Tod [32] proved that on compact EW

manifolds this implies that θ♭ is a Killing vector of the standard metric g.

In ref. [30], Gauduchon & Tod studied the structure of 4-dimensional hyper-Hermitian

Riemannian spaces admitting a tri-holomorphic Killing vector, i.e. Killing vectors that are

compatible with the 3 complex structures on the hyperHermitian space. A result of that

study is that the 3-dimensional base-space is determined by a Dreibein, or orthonormal

frame, Ex, a 1-form θ and a real function κ that must satisfy

dEx = θ ∧Ex − κ ⋆ Ex , (C.8)

where ⋆ is to be taken w.r.t. the Riemannian metric constructed out of the Dreibein.

The underlying geometry imposed by the above equation is that of a specific type of 3-

dimensional EW-spaces, called hyperCR or Gauduchon-Tod spaces.5 The extra restriction

to be imposed on the EW-space, which are equivalent to imposing (C.8), are6

W = −3

2
κ2 , (C.9)

⋆dθ = dκ + κ θ . (C.10)

Comparing this last expression to the ones obtained in the main text, we see that κ =

−
√

3χ/2 and θ = χB (note also that the operator ⋆ corresponds to −⋆3 in the main text).

The standard example [30] of a GT-space is the Berger sphere

ds2Berger = dφ2 + sin2 φdϕ2 + cos2 µ [dψ + cosφdϕ]2 = (σ1
L)2 + (σ2

L)2 + cos2 µ(σ3
L)2 ,

θ = sinµ cosµ [dψ + cosφdϕ] = sinµ cosµ σ3
L , (C.11)

which is a squashed S3 or an SU(2) group manifold with a U(1)-invariant metric. One can

easily see that the metric is Gauduchon-Tod with κ = cosµ: this means that in order to

use it in the 5-dimensional solutions it needs to be rescaled by a constant.

Another class of GT-spaces, albeit not in the Gauduchon-gauge, was found by Calder-

bank and Tod [33] and reads

ds2 = dx2 + 4 |x+ h|2 dzdz̄

(1 + |z|2)2 , (C.12)

θ = 2Re

(

1

x+ h

)

dx , (C.13)

κ = 2Im

(

1

x+ h

)

, (C.14)

5 Observe that the Jones-Tod construction [35] implies that the 3-dimensional space orthogonal to a

generic Killing vector on a 4-dimensional hyperHermitian space is always Einstein-Weyl.
6 The sign difference between eq. (C.9) and eq. (S) in [30, prop. 5] is due to a differing definition of the

Riemann tensor.
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where h is an arbitrary holomorphic function h = h(z). As κ is not constant, we must

rescale the metric in order to use it to construct a 5-dimensional solution. Observe that

the choice h = −h̄ results in the 3-sphere and that the choice h = h̄ leads to the flat metric

on R
3 with κ = 0 and cannot be used to generate 5-dimensional solutions.
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